论文标题
自动驾驶汽车的软件体系结构:第一个CARLA自动驾驶挑战中的LRM-B团队进入
A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the First CARLA Autonomous Driving Challenge
论文作者
论文摘要
第一个卡拉自动驾驶挑战的目的是部署自动驾驶系统,以领导复杂的交通情况,在这些情况下,所有参与者都面临着相同的挑战性交通状况。根据组织者的说法,这项竞争是为了使用Carla模拟器为自动驾驶汽车区域开发做出贡献的世界各地自动驾驶汽车的发展和开发的一种方式。因此,本文介绍了在模拟的城市环境中导航自动驾驶汽车的架构设计,该设计试图实施交通数量最少的违规行为,该设计用作基准的基线,用于基准的原始架构,用于自主导航式Carina 2。我们的经纪人在模拟的场景中旅行了几个小时,赢得了他的能力,赢得了他的三个轨道,并在四个轨道上赢得了挑战,并被分为挑战。 我们的体系结构是为了满足Carla自主驾驶挑战的要求,并具有使用3D点云,使用卷积神经网络(CNN)(CNN)和深度信息的障碍物检测的组成部分,使用Markov决策过程(MDP)和控制模型(MPC)(MARKOV决策过程)(MARKOV决策过程(MDP),使用短期运动预测,使用碰撞检测进行碰撞检测的风险评估。
The objective of the first CARLA autonomous driving challenge was to deploy autonomous driving systems to lead with complex traffic scenarios where all participants faced the same challenging traffic situations. According to the organizers, this competition emerges as a way to democratize and to accelerate the research and development of autonomous vehicles around the world using the CARLA simulator contributing to the development of the autonomous vehicle area. Therefore, this paper presents the architecture design for the navigation of an autonomous vehicle in a simulated urban environment that attempts to commit the least number of traffic infractions, which used as the baseline the original architecture of the platform for autonomous navigation CaRINA 2. Our agent traveled in simulated scenarios for several hours, demonstrating his capabilities, winning three out of the four tracks of the challenge, and being ranked second in the remaining track. Our architecture was made towards meeting the requirements of CARLA Autonomous Driving Challenge and has components for obstacle detection using 3D point clouds, traffic signs detection and classification which employs Convolutional Neural Networks (CNN) and depth information, risk assessment with collision detection using short-term motion prediction, decision-making with Markov Decision Process (MDP), and control using Model Predictive Control (MPC).