论文标题

细微差别:细微的对话的自然话语注释与估计分布

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions

论文作者

Chen, Zhiyu, Liu, Honglei, Xu, Hu, Moon, Seungwhan, Zhou, Hao, Liu, Bing

论文摘要

现有的对话系统主要是以代理为中心,它假设用户话语将紧随系统本体论(对于NLU或对话状态跟踪)。但是,在实际情况下,非常希望用户可以自己的方式自由讲话。用户适应未知系统本体是极其困难的,即使不是不可能的。在这项工作中,我们试图建立一个以用户为中心的对话系统。由于对用户对本体的自由表达的文音没有干净的映射,因此我们首先将用户偏好对系统本体论的估计分布进行建模,并将用户的话语映射到此类发行版。学习这样的映射对现有知识的推理提出了新的挑战,从事实知识,常识知识到用户自己的情况。为此,我们构建了一个名为“细微差别”的新数据集,该数据集的重点是用于对话推荐的这种现实设置。通过对话模拟和释义收集,细微差别包含5.1k对话,高质量用户响应的26k转弯。我们进行实验,既显示了问题设定的有用性和挑战。我们认为细微差别可以作为将现有研究从以代理为中心的系统推向以用户为中心的系统的宝贵资源。代码和数据可在\ url {https://github.com/facebookresearch/nuanced}上公开获得。

Existing conversational systems are mostly agent-centric, which assumes the user utterances would closely follow the system ontology (for NLU or dialogue state tracking). However, in real-world scenarios, it is highly desirable that the users can speak freely in their own way. It is extremely hard, if not impossible, for the users to adapt to the unknown system ontology. In this work, we attempt to build a user-centric dialogue system. As there is no clean mapping for a user's free form utterance to an ontology, we first model the user preferences as estimated distributions over the system ontology and map the users' utterances to such distributions. Learning such a mapping poses new challenges on reasoning over existing knowledge, ranging from factoid knowledge, commonsense knowledge to the users' own situations. To this end, we build a new dataset named NUANCED that focuses on such realistic settings for conversational recommendation. Collected via dialogue simulation and paraphrasing, NUANCED contains 5.1k dialogues, 26k turns of high-quality user responses. We conduct experiments, showing both the usefulness and challenges of our problem setting. We believe NUANCED can serve as a valuable resource to push existing research from the agent-centric system to the user-centric system. The code and data is publicly available at \url{https://github.com/facebookresearch/nuanced}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源