论文标题

$λ$ - 点异常,鉴于$ O(2)$ o(2)$ $ $ $ $ n $型号的七循环超几何重新定位

The $λ$-point anomaly in view of the seven-loop Hypergeometric resummation for the critical exponent $ν$ of the $O(2)$ $ϕ^4$ model

论文作者

Shalaby, Abouzeid M.

论文摘要

在这项工作中,我们使用特定的参数化(Mera et.Al inPhys。Rev.Let。115,143001(2015))来近似于$ O(2)$ - Symmetric $ ϕ^4 $模型的七环关键指数$ν$。我们的预测给出了结果$ν= 0.6711(7)$,该$与哥伦比亚航天飞机上的著名实验中的值$ν= 0.6709(1)$兼容。另一方面,我们的结果也与最新的精确理论预测兼容,这些预测排除了实验结果。这些理论上的结果包括非扰动重新归一化组计算($ν= 0.6716(6)$),这是Monte Carlo模拟($ν= 0.67169(7)$)的最确切确切结果,以及最近的Conformal Bootstrap计算($ν= 0.67175(10)(10)$)。尽管我们的结果与实验兼容,但重新归一化组的图与循环的数量表明,较高的订单应以有利于理论预测的方式显着增加$ν$指数的准确性和精度。

In this work, we use a specific parameterization of the hypergeometric approximants ( the one by Mera et.al in Phys. Rev. Let. 115, 143001 (2015)) to approximate the seven-loop critical exponent $ν$ for the $O(2)$-symmetric $ϕ^4$ model. Our prediction gives the result $ν=0.6711(7)$ which is compatible with the value $ν=0.6709(1)$ from the famous experiment carried on the space shuttle Columbia. On the other hand, our result is also compatible with recent precise theoretical predictions that are excluding the experimental result. These theoretical results include non-perturbative renormalization group calculations ( $ν=0.6716(6)$), the most precise result from Monte Carlo simulations ($ν=0.67169(7)$) as well as the recent conformal bootstrap calculations ($ν=0.67175(10)$). Although our result is compatible with experiment, the plot of renormalization group result versus the number of loops suggests that higher orders are expected to add significantly to accuracy and precision of the $ν$ exponent in a way that may favor the theoretical predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源