论文标题
贝叶斯替代构型模型,以估计橡胶状材料的故障概率
A Bayesian Surrogate Constitutive Model to Estimate Failure Probability of Rubber-Like Materials
论文作者
论文摘要
在这项研究中,开发了一种弹性材料的随机组成型建模方法,以考虑材料行为及其预测的不确定性。与概率方法相比,这项工作导致确定性方法的证明是确定性方法的误差,以计算失败的概率。首先,用于代表超弹性本构模型的Carroll模型,采用了贝叶斯线性回归模型校准方法。根据最大似然估计(MLE)和最大先验(MAP)估计,对开发的模型进行校准。接下来,使用高斯过程(GP)作为非参数方法来估计弹性材料的概率行为。在这种方法中,使用L-BFGS方法计算了GP中径向基核的高参数。为了证明模型校准和不确定性传播,这些方法是在两个实验数据集的基于硅和聚氨酯基粘合剂的实验数据集上进行的,每种材料中有四个样品。这些不确定性源于模型,测量,仅举几例。最后,通过一阶可靠性方法(形式)分析(CMC)模拟这些数据集的故障概率计算分析,通过基于失败伸展时的随机构成模型创建极限状态函数。此外,灵敏度分析用于显示每个参数在失败概率中的重要性。结果表明,提出的方法的性能不仅是用于不确定性定量和模型校准的,而且还用于对超弹性材料的故障概率计算。
In this study, a stochastic constitutive modeling approach for elastomeric materials is developed to consider uncertainty in material behavior and its prediction. This effort leads to a demonstration of the deterministic approaches error compared to probabilistic approaches in order to calculate the probability of failure. First, the Bayesian linear regression model calibration approach is employed for the Carroll model representing a hyperelastic constitutive model. The developed model is calibrated based on the Maximum Likelihood Estimation (MLE) and Maximum a Priori (MAP) estimation. Next, a Gaussian process (GP) as a non-parametric approach is utilized to estimate the probabilistic behavior of elastomeric materials. In this approach, hyper-parameters of the radial basis kernel in GP are calculated using L-BFGS method. To demonstrate model calibration and uncertainty propagation, these approaches are conducted on two experimental data sets for silicon-based and polyurethane-based adhesives, with four samples from each material. These uncertainties stem from model, measurement, to name but a few. Finally, failure probability calculation analysis is conducted with First Order Reliability Method (FORM) analysis and Crude Monte Carlo (CMC) simulation for these data sets by creating a limit state function based on the stochastic constitutive model at failure stretch. Furthermore, sensitivity analysis is used to show the importance of each parameter in the probability of failure. Results show the performance of the proposed approach not only for uncertainty quantification and model calibration but also for failure probability calculation of hyperelastic materials.