论文标题

关于带相同痕迹结的结构的注释

Notes on constructions of knots with the same trace

论文作者

Tagami, Keiji

论文摘要

一个结的$ m $ - 跟踪是从$ \ mathbf {b}^4 $获得的$ 4 $ - manifold,它通过与$ M $ -M $ -FRAMING沿着结上的$ 2 $ - Handle。 2015年,安倍晋三,钟,卢克克和奥索纳赫推出了一种技术,以相同的$ m $ trace构建无限的许多结,这被称为操作$(\ ast m)$。在本文中,我们证明他们的技术可以用Gompf和Miyazaki的可划分模式来解释。此外,我们表明,可以通过操作$(\ ast m)$来解释Teragaito提供相同$ 4 $手术的结一家。

The $m$-trace of a knot is the $4$-manifold obtained from $\mathbf{B}^4$ by attaching a $2$-handle along the knot with $m$-framing. In 2015, Abe, Jong, Luecke and Osoinach introduced a technique to construct infinitely many knots with the same $m$-trace, which is called the operation $(\ast m)$. In this paper, we prove that their technique can be explained in terms of Gompf and Miyazaki's dualizable pattern. In addition, we show that the family of knots admitting the same $4$-surgery given by Teragaito can be explained by the operation $(\ast m)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源