论文标题
根据$ s(t)$,$ s_1(t)$和$ζ(1/2+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ s)$的明确估计。
On explicit estimates for $S(t)$, $S_1(t)$, and $ζ(1/2+\mathrm{i}t)$ under the Riemann Hypothesis
论文作者
论文摘要
假设假设是$ s(t)$,$ s_1(t)$和$ζ\ left(1/2+\ mathrm {i} t \ right)$,同时将它们与最近证明的无条件的无条件进行比较时,我们可以为模量提供明确的上限。作为推论,我们获得了有条件的显式绑定在Riemann Zeta功能连续零之间的间隙上。
Assuming the Riemann Hypothesis, we provide explicit upper bounds for moduli of $S(t)$, $S_1(t)$, and $ζ\left(1/2+\mathrm{i}t\right)$ while comparing them with recently proven unconditional ones. As a corollary we obtain a conditional explicit bound on gaps between consecutive zeros of the Riemann zeta-function.