论文标题

深度内核监督结构网络中的节点分类的散列

Deep Kernel Supervised Hashing for Node Classification in Structural Networks

论文作者

Guo, Jia-Nan, Mao, Xian-Ling, Lin, Shu-Yang, Wei, Wei, Huang, Heyan

论文摘要

事实证明,结构网络中的节点分类在许多现实世界应用中很有用。随着网络嵌入的开发,节点分类的性能得到了极大的改善。但是,几乎所有基于网络嵌入的方法都很难捕获节点的实际类别特征,因为在低维空间中存在线性不可分割的问题。同时,他们不能将网络结构信息和节点标签信息同时纳入网络嵌入。为了解决上述问题,在本文中,我们提出了一种新颖的深内核监督哈希(DKSH)方法,以学习用于节点分类的节点的哈希表示。具体而言,首先提出了深层的多个内核学习,以将节点映射到合适的希尔伯特空间中,以解决线性不可分割的问题。然后,不仅要考虑两个节点之间的结构相似性,还设计了一个新的相似性矩阵来合并网络结构信息和节点标签信息。在相似性矩阵的监督下,博学的散点表示,同时可以从博学的希尔伯特(Hilbert Space)中保留两种信息。广泛的实验表明,所提出的方法在三个现实世界基准数据集中显着优于最先进的基线。

Node classification in structural networks has been proven to be useful in many real world applications. With the development of network embedding, the performance of node classification has been greatly improved. However, nearly all the existing network embedding based methods are hard to capture the actual category features of a node because of the linearly inseparable problem in low-dimensional space; meanwhile they cannot incorporate simultaneously network structure information and node label information into network embedding. To address the above problems, in this paper, we propose a novel Deep Kernel Supervised Hashing (DKSH) method to learn the hashing representations of nodes for node classification. Specifically, a deep multiple kernel learning is first proposed to map nodes into suitable Hilbert space to deal with linearly inseparable problem. Then, instead of only considering structural similarity between two nodes, a novel similarity matrix is designed to merge both network structure information and node label information. Supervised by the similarity matrix, the learned hashing representations of nodes simultaneously preserve the two kinds of information well from the learned Hilbert space. Extensive experiments show that the proposed method significantly outperforms the state-of-the-art baselines over three real world benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源