论文标题

贝叶斯对纵向半连续生物标志物的两部分联合模型和带有R-Inla的末端事件:癌症临床试验评估的兴趣

Bayesian Estimation of Two-Part Joint Models for a Longitudinal Semicontinuous Biomarker and a Terminal Event with R-INLA: Interests for Cancer Clinical Trial Evaluation

论文作者

Rustand, Denis, van Niekerk, Janet, Rue, Håvard, Tournigand, Christophe, Rondeau, Virginie, Briollais, Laurent

论文摘要

最近根据频繁估计引入了纵向半连续生物标志物和末端事件的两部分关节模型。生物标志物分布分解为正值正值和预期值的概率。共享的随机效应可以代表生物标志物与终端事件之间的关联结构。与具有生物标志物的单个回归模型的标准关节模型相比,计算负担增加。在这种情况下,R软件包FrailTypack中实现的频繁估计对于复杂模型(即大量参数和随机效果的维度)可能具有挑战性。作为替代方案,我们提出了基于集成的嵌套拉普拉斯近似(INLA)算法的贝叶斯估计,以减轻计算负担并拟合更复杂的模型。我们的仿真研究证实,INLA提供了后验估计值的准确近似值,并在所考虑的情况下与FailailTypack相比,估计值的计算时间和估计变异性降低。我们将两项随机癌症临床试验(Gercor和Prime研究)的分析中的贝叶斯和频繁方法对比,其中INLA的生物标志物与事件风险之间的关联差异降低。此外,贝叶斯方法能够表征与主要研究中与治疗不同反应不同的患者的亚组。我们的研究表明,使用INLA算法的贝叶斯方法使可能在广泛的临床应用中吸引的复杂关节模型适合复杂的关节模型。

Two-part joint models for a longitudinal semicontinuous biomarker and a terminal event have been recently introduced based on frequentist estimation. The biomarker distribution is decomposed into a probability of positive value and the expected value among positive values. Shared random effects can represent the association structure between the biomarker and the terminal event. The computational burden increases compared to standard joint models with a single regression model for the biomarker. In this context, the frequentist estimation implemented in the R package frailtypack can be challenging for complex models (i.e., large number of parameters and dimension of the random effects). As an alternative, we propose a Bayesian estimation of two-part joint models based on the Integrated Nested Laplace Approximation (INLA) algorithm to alleviate the computational burden and fit more complex models. Our simulation studies confirm that INLA provides accurate approximation of posterior estimates and to reduced computation time and variability of estimates compared to frailtypack in the situations considered. We contrast the Bayesian and frequentist approaches in the analysis of two randomized cancer clinical trials (GERCOR and PRIME studies), where INLA has a reduced variability for the association between the biomarker and the risk of event. Moreover, the Bayesian approach was able to characterize subgroups of patients associated with different responses to treatment in the PRIME study. Our study suggests that the Bayesian approach using INLA algorithm enables to fit complex joint models that might be of interest in a wide range of clinical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源