论文标题

个性化的元路径生成异质GNNS

Personalised Meta-path Generation for Heterogeneous GNNs

论文作者

Zhong, Zhiqiang, Li, Cheng-Te, Pang, Jun

论文摘要

最近,对异质图表示学习(HGRL)的越来越多的关注,该学习旨在将丰富的结构和语义信息嵌入异质信息网络(HINS)中,以中的低维节点表示。迄今为止,大多数HGRL模型都依赖于手工制作的元路径。但是,对手动定义的元路径的依赖性需要域知识,这对于复杂的呼吸很难获得。更重要的是,每个节点类型或节点对附加的所有现有HGRL方法的预定义或生成的元路径不能与每个节点个性化。为了完全释放HGRL的力量,我们提出了一个新颖的框架,个性化的基于元路径的异质图神经网络(PM-HGNN),以共同生成元路径,这些元路径在HIN中为每个单个节点个性化并学习针对诸如节点分类的目标下游任务的节点表示。确切地说,PM-HGNN将元路径生成视为马尔可夫决策过程,并利用策略网络适应为每个单个节点生成元路径,并同时学习有效的节点表示。通过利用下游任务的绩效提高,对策略网络进行了深入的强化学习培训。我们进一步提出了一个扩展名PM-HGNN ++,以更好地编码关系结构并加速元路径生成期间的训练。实验结果表明,在节点分类的各种环境中,PM-HGNN和PM-HGNN和PM-HGNN ++都可以显着,一致地优于16个竞争基线和最先进的方法。定性分析还表明,PM-HGNN ++可以识别被人类知识所忽略的有意义的元路径。

Recently, increasing attention has been paid to heterogeneous graph representation learning (HGRL), which aims to embed rich structural and semantic information in heterogeneous information networks (HINs) into low-dimensional node representations. To date, most HGRL models rely on hand-crafted meta-paths. However, the dependency on manually-defined meta-paths requires domain knowledge, which is difficult to obtain for complex HINs. More importantly, the pre-defined or generated meta-paths of all existing HGRL methods attached to each node type or node pair cannot be personalised to each individual node. To fully unleash the power of HGRL, we present a novel framework, Personalised Meta-path based Heterogeneous Graph Neural Networks (PM-HGNN), to jointly generate meta-paths that are personalised for each individual node in a HIN and learn node representations for the target downstream task like node classification. Precisely, PM-HGNN treats the meta-path generation as a Markov Decision Process and utilises a policy network to adaptively generate a meta-path for each individual node and simultaneously learn effective node representations. The policy network is trained with deep reinforcement learning by exploiting the performance improvement on a downstream task. We further propose an extension, PM-HGNN++, to better encode relational structure and accelerate the training during the meta-path generation. Experimental results reveal that both PM-HGNN and PM-HGNN++ can significantly and consistently outperform 16 competing baselines and state-of-the-art methods in various settings of node classification. Qualitative analysis also shows that PM-HGNN++ can identify meaningful meta-paths overlooked by human knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源