论文标题

校长的权力$ q $ - 伯雷尔理想

Powers of Principal $Q$-Borel ideals

论文作者

Moreno, Eduardo Camps, Kohne, Craig, Sarmiento, Eliseo, Van Tuyl, Adam

论文摘要

修复$ \ {x_1,\ ldots,x_n \} $上的poset $ q $。 a $ q $ -borel单一理想$ i \ subseteq \ mathbb {k} [x_1,\ ldots,x_n] $是一个单一理想的理想,其单元在像$ q $的borel样动作下关闭。单一理想$ i $是主要的$ q $ - borel理想,表示为$ i = q(m)$,如果有单个$ m $,以便可以通过$ m $ $ m $的$ q $ borel移动获得所有最小的$ i $的发电机。在本文中,我们研究了本金$ q $ -borel理想的权力。在我们的结果中,我们表明,$ Q(m)$的所有权力都符合其象征力量,并且理想的$ q(m)$满足了相关素数的持久性属性。我们还根据poset $ q $计算$ q(m)$的分析价差。

Fix a poset $Q$ on $\{x_1,\ldots,x_n\}$. A $Q$-Borel monomial ideal $I \subseteq \mathbb{K}[x_1,\ldots,x_n]$ is a monomial ideal whose monomials are closed under the Borel-like moves induced by $Q$. A monomial ideal $I$ is a principal $Q$-Borel ideal, denoted $I=Q(m)$, if there is a monomial $m$ such that all the minimal generators of $I$ can be obtained via $Q$-Borel moves from $m$. In this paper we study powers of principal $Q$-Borel ideals. Among our results, we show that all powers of $Q(m)$ agree with their symbolic powers, and that the ideal $Q(m)$ satisfies the persistence property for associated primes. We also compute the analytic spread of $Q(m)$ in terms of the poset $Q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源