论文标题
Legolas:一种现代的磁流体动力学光谱工具
Legolas: a modern tool for magnetohydrodynamic spectroscopy
论文作者
论文摘要
磁水动力学(MHD)光谱学对于许多天体物理学纪律至关重要,范围从地球体术语到星形植物学,超过太阳冠状(LOOP)地震学,以及在喷气机,吸积盘或Solar/solar/solar/solar/selal Alterners中的波浪和不稳定性的研究。 MHD光谱量量化了所有线性(站立或行进)波模式,包括过高的(即增长)或阻尼模式,以达到实现力和热力学平衡的给定配置。在这里,我们提出了一种新型的开源数值代码,以计算一维平衡的完整MHD光谱,其平衡压力梯度,Lorentz力量,离心效应和重力,具有非绝热方面,例如辐射性损失,热传导和电阻性。管理方程式在可忽略的坐标中使用傅立叶表示,并且使用有限高度或径向变化中的有限元元素,使用相同的实现来处理线性化方程组。弱的Galerkin配方会导致广义(非平民)基质特征值问题,而线性代数算法计算所有特征值和相应的特征向量。我们展示了许多公认的结果,从磁化,分层的大气中的P和G模型等于与冠状环地震学,热不稳定性和离散稳定的Alfvén模式相关的模式,与太阳能突出相关,到天体喷气流量的稳定性研究。我们遇到(Quasi)Parker,(Quasi)互换,电流驱动和开尔文·赫尔姆霍尔茨(Kelvin-Helmholtz)的稳定性,以及非理想的准模式,电阻撕裂模式,直至磁持续到磁性热量。高分辨率的使用为先前计算的光谱提供了新的启示,揭示了尚未研究的有趣光谱区域。
Magnetohydrodynamic (MHD) spectroscopy is central to many astrophysical disciplines, ranging from helio- to asteroseismology, over solar coronal (loop) seismology, to the study of waves and instabilities in jets, accretion disks, or solar/stellar atmospheres. MHD spectroscopy quantifies all linear (standing or travelling) wave modes, including overstable (i.e. growing) or damped modes, for a given configuration that achieves force and thermodynamic balance. Here, we present Legolas, a novel, open-source numerical code to calculate the full MHD spectrum of one-dimensional equilibria with flow, that balance pressure gradients, Lorentz forces, centrifugal effects and gravity, enriched with non-adiabatic aspects like radiative losses, thermal conduction and resistivity. The governing equations use Fourier representations in the ignorable coordinates, and the set of linearised equations are discretised using Finite Elements in the important height or radial variation, handling Cartesian and cylindrical geometries using the same implementation. A weak Galerkin formulation results in a generalised (non-Hermitian) matrix eigenvalue problem, and linear algebraic algorithms calculate all eigenvalues and corresponding eigenvectors. We showcase a plethora of well-established results, ranging from p- and g-modes in magnetised, stratified atmospheres, over modes relevant for coronal loop seismology, thermal instabilities and discrete overstable Alfvén modes related to solar prominences, to stability studies for astrophysical jet flows. We encounter (quasi-)Parker, (quasi-)interchange, current-driven and Kelvin-Helmholtz instabilities, as well as non-ideal quasi-modes, resistive tearing modes, up to magneto-thermal instabilities. The use of high resolution sheds new light on previously calculated spectra, revealing interesting spectral regions that have yet to be investigated.