论文标题
扩散过程不变量度的稳定性估计,适用于力矩测量和Stein内核的稳定性
Stability estimates for invariant measures of diffusion processes, with applications to stability of moment measures and Stein kernels
论文作者
论文摘要
我们研究了基于对数凸腔的假设,研究了系数的$ l^p $距离的扩散过程不变性测量值的稳定性。该方法是Crippa和de Lellis引入的技术来研究运输方程的一种变体。作为应用程序,我们证明了通过Stein内核的时刻构造构建Ledoux,Nourdin和Peccati的不平等范围的部分扩展,这些不平等与非高斯环境有关。
We investigate stability of invariant measures of diffusion processes with respect to $L^p$ distances on the coefficients, under an assumption of log-concavity. The method is a variant of a technique introduced by Crippa and De Lellis to study transport equations. As an application, we prove a partial extension of an inequality of Ledoux, Nourdin and Peccati relating transport distances and Stein discrepancies to a non-Gaussian setting via the moment map construction of Stein kernels.