论文标题

行星如何通过卵石积聚生长。 iii。内部组成梯度的出现

How planets grow by pebble accretion. III. Emergence of an interior composition gradient

论文作者

Ormel, Chris, Vazan, Allona, Brouwers, Marc

论文摘要

由于固体的持续积聚,行星在它们的形成过程中形成了大气氛。习惯上假设所有固体最终都处于构成难治材料的“核心”的中心,而信封仍然不含金属。最近的工作以及Juno任务的观察表明,这种区别可能并不明确。确实,小硅酸盐,卵石大小的颗粒在升华温度(T〜2,000 K)时将在大气中升华。在本文中,我们扩展了以前的分析工作,以计算这种卵石积聚方案下的行星特性。我们对积聚行星的大气进行了1D数值计算,解决了恒星结构方程,并通过描述氢/氦硅酸盐硅酸盐蒸气混合物的非理想状态方程增强。计算在金属中总质量等于H/HE气体的程度终止,我们在数值上确认这是失控气体积聚的开始。当卵石在到达核心之前升华时,不足(积聚)能量可以将浓稠的富含蒸气的下层与较低的金属性层混合。因此,Z随着半径减小的逐渐结构是卵石积聚形成行星的自然结果。此外,我们强调的是,(小)鹅卵石可以充当不透明度的主要来源,防止快速冷却并呈现(微型)海王星的通道,以在富含气体的磁盘中生存。然而,一旦卵石积聚消退,大气就会迅速清除,然后是失控的气体积聚。我们认为大气回收是使这些行星信封生长停滞的更可能的机制。

During their formation, planets form large, hot atmospheres due to the ongoing accretion of solids. It has been customary to assume that all solids end up at the center constituting a "core" of refractory materials, whereas the envelope remains metal-free. Recent work, as well as observations by the JUNO mission, indicate however that the distinction may not be so clear cut. Indeed, small silicate, pebble-sized particles will sublimate in the atmosphere when they hit the sublimation temperature (T ~ 2,000 K). In this paper we extend previous analytical work to compute the properties of planets under such a pebble accretion scenario. We conduct 1D numerical calculations of the atmosphere of an accreting planet, solving the stellar structure equations, augmented by a non-ideal equation of state that describes a hydrogen/helium-silicate vapor mixture. Calculations terminate at the point where the total mass in metal equals that of the H/He gas, which we numerically confirm as the onset of runaway gas accretion. When pebbles sublimate before reaching the core, insufficient (accretion) energy is available to mix dense, vapor-rich lower layers with the higher layers of lower metallicity. A gradual structure in which Z decreases with radius is therefore a natural outcome of planet formation by pebble accretion. We highlight, furthermore, that (small) pebbles can act as the dominant source of opacity, preventing rapid cooling and presenting a channel for (mini-)Neptunes to survive in gas-rich disks. Nevertheless, once pebble accretion subsides, the atmosphere rapidly clears followed by runaway gas accretion. We consider atmospheric recycling to be the more probable mechanisms that have stalled the growth of these planets' envelopes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源