论文标题

对人类海关检查的积极学习

Active Learning for Human-in-the-Loop Customs Inspection

论文作者

Kim, Sundong, Mai, Tung-Duong, Han, Sungwon, Park, Sungwon, Khanh, Thi Nguyen Duc, So, Jaechan, Singh, Karandeep, Cha, Meeyoung

论文摘要

我们研究了人类的海关检查方案,在该场景中,AI辅助算法通过建议检查一套进口商品来支持海关人员。如果检查的物品是欺诈性的,则军官可以缴纳额外的职责。然后,形成的日志用作连续迭代的其他培训数据。选择检查可疑物品的首先会导致海关收入立即获得收益,但是这种检查可能不会带来学习动态交通模式的新见解。另一方面,检查不确定的项目可以帮助获取新知识,这将用作更新选择系统的补充培训资源。基于从三个国家 /地区获得的多年海关数据集,我们证明,要应对贸易数据的域转移是必要的。结果表明,选择可能欺诈性和不确定项目的混合策略最终将优于仅利用策略。

We study the human-in-the-loop customs inspection scenario, where an AI-assisted algorithm supports customs officers by recommending a set of imported goods to be inspected. If the inspected items are fraudulent, the officers can levy extra duties. Th formed logs are then used as additional training data for successive iterations. Choosing to inspect suspicious items first leads to an immediate gain in customs revenue, yet such inspections may not bring new insights for learning dynamic traffic patterns. On the other hand, inspecting uncertain items can help acquire new knowledge, which will be used as a supplementary training resource to update the selection systems. Based on multiyear customs datasets obtained from three countries, we demonstrate that some degree of exploration is necessary to cope with domain shifts in trade data. The results show that a hybrid strategy of selecting likely fraudulent and uncertain items will eventually outperform the exploitation-only strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源