论文标题

球形模型中的载体和三联合校正与重要的

Holonomy and inverse-triad corrections in spherical models coupled to matter

论文作者

Alonso-Bardaji, Asier, Brizuela, David

论文摘要

Loop量子重力在经典相对论的经典约束中引入了两个特征修改:自治和反度校正。在本文中,编码这种校正的系统构造是针对球形对称的空间开发的。分析的起点是一种通用的汉密尔顿约束,其中考虑了三合会和曲率成分的自由功能以及几何和物质自由度之间的非最小耦合。然后,为了获得形成一流代数的修改后的哈密顿量,强加了异常自由的要求。通过这种方式,我们构建了一个一致的球形一般相对性变形的家族,该家族在文献中概括了先前的结果。讨论的派生针对真空以及两个问题模型实施:灰尘和标量场。但是,只有变形的真空模型可以接受连接组件的自由功能。因此,在目前的假设下,我们得出结论,在存在这些物质领域的情况下,不允许进行自动校正。

Loop quantum gravity introduces two characteristic modifications in the classical constraints of general relativity: the holonomy and inverse-triad corrections. In this paper, a systematic construction of anomaly-free effective constraints encoding such corrections is developed for spherically symmetric spacetimes. The starting point of the analysis is a generic Hamiltonian constraint where free functions of the triad and curvature components as well as non-minimal couplings between geometric and matter degrees of freedom are considered. Then, the requirement of anomaly freedom is imposed in order to obtain a modified Hamiltonian that forms a first-class algebra. In this way, we construct a family of consistent deformations of spherical general relativity, which generalizes previous results in the literature. The discussed derivation is implemented for vacuum as well as for two matter models: dust and scalar field. Nonetheless, only the deformed vacuum model admits free functions of the connection components. Therefore, under the present assumptions, we conclude that holonomy corrections are not allowed in the presence of these matter fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源