论文标题
图形卷积神经网络的非线性状态空间概括
Nonlinear State-Space Generalizations of Graph Convolutional Neural Networks
论文作者
论文摘要
图形卷积神经网络(GCNN)通过将线性图卷积嵌套到非线性中从网络数据中学习组成表示。在这项工作中,我们从状态空间的角度接触GCNNS,揭示了图形卷积模块是一种简约的线性状态空间模型,在该模型中,状态更新矩阵是图形移位算子。我们表明,此状态更新可能是有问题的,因为它是非参数,并且取决于可能爆炸或消失的图形频谱。因此,GCNN必须在从数据中提取功能和处理这些不稳定性之间进行自由度。为了改善这种折衷,我们提出了一个新型的Nodal聚合规则系列,该家族以非线性状态空间参数方式汇总了一层中的节点特征,从而可以更好地折衷。我们在这个家庭中开发了两个体系结构,其灵感来自具有和没有淋巴结机制的复发。拟议的解决方案将GCNN推广,并提供了一个额外的手柄来控制状态更新并从数据中学习。源定位和作者归因的数值结果表明,非线性状态空间泛化模型比基线GCNN的优越性。
Graph convolutional neural networks (GCNNs) learn compositional representations from network data by nesting linear graph convolutions into nonlinearities. In this work, we approach GCNNs from a state-space perspective revealing that the graph convolutional module is a minimalistic linear state-space model, in which the state update matrix is the graph shift operator. We show that this state update may be problematic because it is nonparametric, and depending on the graph spectrum it may explode or vanish. Therefore, the GCNN has to trade its degrees of freedom between extracting features from data and handling these instabilities. To improve such trade-off, we propose a novel family of nodal aggregation rules that aggregate node features within a layer in a nonlinear state-space parametric fashion allowing for a better trade-off. We develop two architectures within this family inspired by the recurrence with and without nodal gating mechanisms. The proposed solutions generalize the GCNN and provide an additional handle to control the state update and learn from the data. Numerical results on source localization and authorship attribution show the superiority of the nonlinear state-space generalization models over the baseline GCNN.