论文标题

贝叶斯通过子网推理深度学习

Bayesian Deep Learning via Subnetwork Inference

论文作者

Daxberger, Erik, Nalisnick, Eric, Allingham, James Urquhart, Antorán, Javier, Hernández-Lobato, José Miguel

论文摘要

贝叶斯范式有可能解决深层神经网络的核心问题,例如校准和数据效率低下。 las,将贝叶斯推论缩放到大量空间通常需要限制性近似。在这项工作中,我们表明,在一小部分模型权重以获取准确的预测后期方面进行推断足以进行推断。将其他权重作为点估计。该子网推理框架使我们能够在此类子集上使用表达性的,否则棘手的后近似值。特别是,我们将子网线性化拉普拉斯作为一种简单,可扩展的贝叶斯深度学习方法实现:我们首先获得了所有权重的地图估计值,然后使用线性化的拉普拉斯近似值在子网上推断出全稳态的高斯后部。我们提出了一个子网选择策略,旨在最大程度地保留模型的预测不确定性。从经验上讲,我们的方法比起完整网络上的合奏和表达式后近似值较低。我们提出的子网(线性化)拉普拉斯方法是在https://github.com/aleximmer/laplace的Laplace Pytorch库中实现的。

The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace as a simple, scalable Bayesian deep learning method: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork using the linearized Laplace approximation. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach compares favorably to ensembles and less expressive posterior approximations over full networks. Our proposed subnetwork (linearized) Laplace method is implemented within the laplace PyTorch library at https://github.com/AlexImmer/Laplace.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源