论文标题

用于宽带声学斗篷逆设计的确定性和概率深度学习模型

Deterministic and probabilistic deep learning models for inverse design of broadband acoustic cloak

论文作者

Ahmed, Waqas W., Farhat, Mohamed, Zhang, Xiangliang, Wu, Ying

论文摘要

由于自然界中没有波浪屏蔽材料,因此很长一段时间以来,将物体隐藏在传入的波浪中(光和/或声音)。然而,人造材料的发明以及光波和声波操纵的新物理原理通过使对象具有声学上的看不见,将这种抽象概念转化为现实。在这里,我们介绍了机器学习驱动的声学斗篷的概念,并演示了具有多层核壳配置的斗篷的一个例子。重要的是,我们基于自动编码器样神经网络结构来开发确定性和概率的深度学习模型,以检索周围物体周围覆盖壳的结构和材料特性,这些壳围绕物体抑制声音在宽光谱范围内的散射,好像不存在。概率模型增强了设计程序的概括能力,并发现了斗篷参数对光谱响应的敏感性。该提案开辟了新的途径,以加快针对光谱响应的智能掩盖设备的设计,并为反向散射问题提供了可行的解决方案。

Concealing an object from incoming waves (light and/or sound) remained science fiction for a long time due to the absence of wave-shielding materials in nature. Yet, the invention of artificial materials and new physical principles for optical and sound wave manipulation translated this abstract concept into reality by making an object acoustically invisible. Here, we present the notion of a machine learning-driven acoustic cloak and demonstrate an example of such a cloak with a multilayered core-shell configuration. Importantly, we develop deterministic and probabilistic deep learning models based on autoencoder-like neural network structure to retrieve the structural and material properties of the cloaking shell surrounding the object that suppresses scattering of sound in a broad spectral range, as if it was not there. The probabilistic model enhances the generalization ability of design procedure and uncovers the sensitivity of the cloak parameters on the spectral response for practical implementation. This proposal opens up new avenues to expedite the design of intelligent cloaking devices for tailored spectral response and offers a feasible solution for inverse scattering problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源