论文标题
非线性Schrödinger方程的GPU加速溶液,用于模拟2D旋转器BEC
GPU-accelerated solutions of the nonlinear Schrödinger equation for simulating 2D spinor BECs
论文作者
论文摘要
作为超越线性的第一个近似值,非线性schrödinger方程(NLSE)可靠地描述了广泛的物理系统。尽管该模型的数值解决方案是完善的,但这些方法可能在计算上很复杂。在本文中,我们展示了一种代码开发方法,展示了如何使用随时可用的图形处理单元(GPU)硬件以及使用开源库的直接代码迁移来大大减少计算时间。此过程表明,如何使用GPU在计算时间内使用幂律缩放的CPU计算进行线性。作为一项特定的案例研究,我们研究了Gross-Pitaevskii方程,这是非线性Schrödinger模型的特定版本,如它在二维中描述的一个被困,相互作用的,两组分组的Bose-Einstein凝结物(BEC)在空间依赖的Interpin coupling中,导致类似于Spin-spin-spin-spin-spin-spin-spin-spin-spin-spin-spin-spin-spin-spin-spin-spin-spineps spin-spin-spineps spin-spine spiphall System。这种计算方法使我们可以在合理的时间内探测高分辨率的空间特征 - 揭示相互作用依赖的相变。我们的计算方法与希望轻松加速物理现象的直接数值模拟的研究小组尤其重要。
As a first approximation beyond linearity, the nonlinear Schrödinger equation (NLSE) reliably describes a broad class of physical systems. Though numerical solutions of this model are well-established, these methods can be computationally complex. In this paper, we showcase a code development approach, demonstrating how computational time can be significantly reduced with readily available graphics processing unit (GPU) hardware and a straightforward code migration using open-source libraries. This process shows how CPU computations with power-law scaling in computation time with grid size can be made linear using GPUs. As a specific case study, we investigate the Gross-Pitaevskii equation, a specific version of the nonlinear Schrödinger model, as it describes in two dimensions a trapped, interacting, two-component Bose-Einstein condensate (BEC) subject to a spatially dependent interspin coupling, resulting in an analog to a spin-Hall system. This computational approach lets us probe high-resolution spatial features - revealing an interaction-dependent phase transition - all in a reasonable amount of time. Our computational approach is particularly relevant for research groups looking to easily accelerate straightforward numerical simulation of physical phenomena.