论文标题
从量子纠缠的一般一级阶段可视化准粒子
Visualizing Quasiparticles from Quantum Entanglement for general 1D phases
论文作者
论文摘要
在这项工作中,我们提出了一个量子信息框架,用于在一维(1D)系统中各种量子阶段中低能准粒子(QP)激发的纠缠行为。我们首先为自由费米子建立了相关矩阵与QP纠缠哈密顿量之间的确切对应关系,并由于QP的位置不确定性而在QP纠缠Hamiltonian中找到扩展的间隙状态。对这种差距状态的更一般的理解可以扩展到QP纠缠哈密顿官的Kramers定理,这也适用于强烈的相互作用系统。此外,我们提出了一组普遍存在的纠缠谱特征,称为纠缠碎片,有条件的互信息和测量诱导了1D对称性受保护拓扑相的QPS的非本地纠缠。因此,我们的结果提供了一个新的框架,可以从QP纠缠中识别物质的不同阶段。
In this work, we present a quantum information framework for the entanglement behavior of the low energy quasiparticle (QP) excitations in various quantum phases in one-dimensional (1D) systems. We first establish an exact correspondence between the correlation matrix and the QP entanglement Hamiltonian for free fermions and find an extended in-gap state in the QP entanglement Hamiltonian as a consequence of the position uncertainty of the QP. A more general understanding of such an in-gap state can be extended to a Kramers theorem for the QP entanglement Hamiltonian, which also applies to strongly interacting systems. Further, we present a set of ubiquitous entanglement spectrum features, dubbed entanglement fragmentation, conditional mutual information, and measurement induced non-local entanglement for QPs in 1D symmetry protected topological phases. Our result thus provides a new framework to identify different phases of matter in terms of their QP entanglement.