论文标题
使用Rubin天文台LSST科学管道的处理GoTo数据I:配置框架的生产
Processing GOTO data with the Rubin Observatory LSST Science Pipelines I : Production of coadded frames
论文作者
论文摘要
在过去的几十年中,人们看到了广阔的田野,高节奏调查的迅速发展,其中最强大的是维拉·鲁宾(Vera C. Rubin)天文台进行的时空(LSST)的传统调查(LSST)。但是,系统的时间域调查天文学的领域如此新,以至于比LSST更小,更灵活的系统将继续获得主要的科学见解。一个这样的例子是重力波光学瞬态观察者(GOTO),其主要科学目标是重力波事件的光学随访。高积累调查对GOTO和其他广阔区域的数据生产的数量和速率提出了对数据处理管道的重大挑战,这些管道需要几乎实时运行才能充分利用时间域。在这项研究中,我们将鲁宾天文台的LSST科学管道调整为处理GOTO数据,从而探索使用此“现成”管道的可行性,以处理来自其他广阔区域,高环境调查的数据。在本文中,我们描述了如何使用LSST科学管道来处理原始的Goto框架,以最终产生校准的共同编码图像和光度源目录。将测得的天文统和光度法与Panstarrs DR1的匹配源的测量值和光度法进行了比较之后,我们发现测得的源位置通常是准确至子像素水平的,并且测得的L波段光度构造是准确至$ \ sim50 $ mmag,$ m_l \ m_l \ sim16 $和$ \ sim200 $ mmag $ mmmag $ mm_1 $ m__l \ sim18。这些值与使用GoTo主要的内部管道Gotophoto获得的值相比,尽管这两个管道都经过了进一步的发展和改进,而不是本研究中使用的实现。最后,如果其他人希望使用LSST Science管道来处理来自其他设施的数据,我们会发布一个通用的“ obs package”。
The past few decades have seen the burgeoning of wide field, high cadence surveys, the most formidable of which will be the Legacy Survey of Space and Time (LSST) to be conducted by the Vera C. Rubin Observatory. So new is the field of systematic time-domain survey astronomy, however, that major scientific insights will continue to be obtained using smaller, more flexible systems than the LSST. One such example is the Gravitational-wave Optical Transient Observer (GOTO), whose primary science objective is the optical follow-up of Gravitational Wave events. The amount and rate of data production by GOTO and other wide-area, high-cadence surveys presents a significant challenge to data processing pipelines which need to operate in near real-time to fully exploit the time-domain. In this study, we adapt the Rubin Observatory LSST Science Pipelines to process GOTO data, thereby exploring the feasibility of using this "off-the-shelf" pipeline to process data from other wide-area, high-cadence surveys. In this paper, we describe how we use the LSST Science Pipelines to process raw GOTO frames to ultimately produce calibrated coadded images and photometric source catalogues. After comparing the measured astrometry and photometry to those of matched sources from PanSTARRS DR1, we find that measured source positions are typically accurate to sub-pixel levels, and that measured L-band photometries are accurate to $\sim50$ mmag at $m_L\sim16$ and $\sim200$ mmag at $m_L\sim18$. These values compare favourably to those obtained using GOTO's primary, in-house pipeline, GOTOPHOTO, in spite of both pipelines having undergone further development and improvement beyond the implementations used in this study. Finally, we release a generic "obs package" that others can build-upon should they wish to use the LSST Science Pipelines to process data from other facilities.