论文标题

使用深神经网络进行实时等离子体分析的诊断数据集成

Diagnostic data integration using deep neural networks for real-time plasma analysis

论文作者

Garola, A. Rigoni, Cavazzana, R., Gobbin, M., Delogu, R. S., Manduchi, G., Taliercio, C., Luchetta, A.

论文摘要

采购设备的最新进展正在为实验提供越来越精确但负担得起的传感器的实验。同时,来自新硬件资源(GPU,FPGA,ACAP)的改进的计算能力已以相对较低的成本提供。这导致我们探索了融合实验的完全更新获取链的可能性,在该实验中,许多来自不同诊断的高速数据来源可以在范围内的算法框架中组合在一起。如果一方面添加带有不同诊断的新数据源可以丰富我们对物理方面的了解,另一方面,整个模型的维度增长,从而使变量之间的关系越来越不透明。基于深层自动编码器组成的这种异质诊断的一种新方法可以缓解此问题,充当结构性稀疏正常器。这已应用于RFX模型实验数据,将血浆温度的软X射线线性图像与磁态相结合。 但是,为了确保实时信号分析,必须对这些算法技术进行调整以在适合非常适合的硬件中运行。特别是表明,尝试对神经元传输功能进行量化,可以修改此类模型以创建嵌入式固件。该固件将深度推理模型近似于一组简单操作,非常适合在FPGA中大量丰富的简单逻辑单元。这是允许使用具有复杂深度神经拓扑的负担得起的硬件并实时操作的关键因素。

Recent advances in acquisition equipment is providing experiments with growing amounts of precise yet affordable sensors. At the same time an improved computational power, coming from new hardware resources (GPU, FPGA, ACAP), has been made available at relatively low costs. This led us to explore the possibility of completely renewing the chain of acquisition for a fusion experiment, where many high-rate sources of data, coming from different diagnostics, can be combined in a wide framework of algorithms. If on one hand adding new data sources with different diagnostics enriches our knowledge about physical aspects, on the other hand the dimensions of the overall model grow, making relations among variables more and more opaque. A new approach for the integration of such heterogeneous diagnostics, based on composition of deep variational autoencoders, could ease this problem, acting as a structural sparse regularizer. This has been applied to RFX-mod experiment data, integrating the soft X-ray linear images of plasma temperature with the magnetic state. However to ensure a real-time signal analysis, those algorithmic techniques must be adapted to run in well suited hardware. In particular it is shown that, attempting a quantization of neurons transfer functions, such models can be modified to create an embedded firmware. This firmware, approximating the deep inference model to a set of simple operations, fits well with the simple logic units that are largely abundant in FPGAs. This is the key factor that permits the use of affordable hardware with complex deep neural topology and operates them in real-time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源