论文标题
信息扰动折衷在广义纠缠交换中
Information-disturbance trade-off in generalized entanglement swapping
论文作者
论文摘要
我们在广义纠缠交换协议中研究信息扰动权衡取舍,其中从铃铛对开始$ \ weft(1,2 \右)$和$ \ weft(3,4 \右)$,一个人对$ \ left(2,3 \右)进行任意联合测量,因此该$ \ \ weft(1,4 \ right)成为Correlated。我们在$ \左(1,4 \右)$的相关性之间获得了权衡不等式的不等式,而剩余信息的相关性分别为$ \左(1,2 \右)$和$ \ weft(3,4 \右)$,并认为如果每个不一样的不一样,则保留了相关性(信息)中包含的信息。我们表明,对于最大纠缠的测量,信息是保守的,但对于任何其他完整的正交测量和与白噪声混合的贝尔测量并不保守。但是,令人惊讶的是,尽管这些测量值不能保留纠缠,但我们发现信息是为阵列两个钟形测量值保存的。我们还表明,即使在我们的示例中,即使在我们的示例中,即使在所有三对$ \ weft(1,2 \右)$,$ \ weft(3,4 \右)$和$ \ weft(1,4 \右)$中,对$ \左(2,3 \右)上的可分开测量可以保护信息。这意味着可以以非平凡的方式将纠缠对的相关性转移到可分开的对,因此在此过程中不会丢失$ Information $。
We study information-disturbance trade-off in generalized entanglement swapping protocols wherein starting from Bell pairs $\left(1,2\right)$ and $\left(3,4\right)$, one performs an arbitrary joint measurement on $\left(2,3\right)$, so that $\left(1,4\right)$ now becomes correlated. We obtain trade-off inequalities between information gain in correlations of $\left(1,4\right)$ and residual information in correlations of $\left(1,2\right)$ and $\left(3,4\right)$ respectively and argue that information contained in correlations (information) is conserved if each inequality is an equality. We show that information is conserved for a maximally entangled measurement but is not conserved for any other complete orthogonal measurement and Bell measurement mixed with white noise. However, rather surprisingly, we find that information is conserved for rank-two Bell diagonal measurements, although such measurements do not conserve entanglement. We also show that a separable measurement on $\left(2,3\right)$ can conserve information, even if, as in our example, the post-measurement states of all three pairs $\left(1,2\right)$, $\left(3,4\right)$, and $\left(1,4\right)$ become separable. This implies correlations from an entangled pair can be transferred to separable pairs in nontrivial ways so that no $information$ is lost in the process.