论文标题
共享空间转移学习用于分析多站点fMRI数据
Shared Space Transfer Learning for analyzing multi-site fMRI data
论文作者
论文摘要
多素模式分析(MVPA)从基于任务的功能磁共振成像(fMRI)数据中学习预测模型,以区分受试者何时执行不同的认知任务,例如看电影或做出决策。 MVPA最适合精心设计的功能集和适当的样本量。但是,大多数FMRI数据集都是嘈杂的,高维,收集昂贵的,并且样本量很小。此外,培训一个可以分析多站点fMRI数据集提供的均匀认知任务的强大,广义的预测模型还有其他挑战。本文提出共享的空间传输学习(SSTL)作为一种新型传输学习(TL)方法,可以在功能上使均匀的多站点fMRI数据集对齐,从而提高每个站点的预测性能。 SSTL首先为每个站点中的所有受试者提取一组共同特征。然后,它使用TL将这些特定网站特定功能映射到独立于站点的共享空间,以提高MVPA的性能。 SSTL使用可扩展的优化过程,该过程有效地适用于高维fMRI数据集。优化过程通过使用单材料算法来提取每个站点的共同特征,并将这些特定网站特定的共同特征映射到独立于站点的共享空间。我们评估了所提出的方法在各种认知任务之间转移的有效性。我们的全面实验证明了SSTL比其他最先进的分析技术实现了卓越的性能。
Multi-voxel pattern analysis (MVPA) learns predictive models from task-based functional magnetic resonance imaging (fMRI) data, for distinguishing when subjects are performing different cognitive tasks -- e.g., watching movies or making decisions. MVPA works best with a well-designed feature set and an adequate sample size. However, most fMRI datasets are noisy, high-dimensional, expensive to collect, and with small sample sizes. Further, training a robust, generalized predictive model that can analyze homogeneous cognitive tasks provided by multi-site fMRI datasets has additional challenges. This paper proposes the Shared Space Transfer Learning (SSTL) as a novel transfer learning (TL) approach that can functionally align homogeneous multi-site fMRI datasets, and so improve the prediction performance in every site. SSTL first extracts a set of common features for all subjects in each site. It then uses TL to map these site-specific features to a site-independent shared space in order to improve the performance of the MVPA. SSTL uses a scalable optimization procedure that works effectively for high-dimensional fMRI datasets. The optimization procedure extracts the common features for each site by using a single-iteration algorithm and maps these site-specific common features to the site-independent shared space. We evaluate the effectiveness of the proposed method for transferring between various cognitive tasks. Our comprehensive experiments validate that SSTL achieves superior performance to other state-of-the-art analysis techniques.