论文标题

填充3个manifolds中的链接和刺

Filling links and spines in 3-manifolds

论文作者

Freedman, Michael, Krushkal, Vyacheslav, Leininger, Christopher J., Reid, Alan W.

论文摘要

我们介绍并研究了3个manifolds中填充链接的概念:如果有1个旋转g的m,则填充了m,它与l,$π_1(g)$注入到$π_1(m \ smalleTsetminus l)$。较弱的“ k填充”版本涉及下部中央系列的注射率模量k- k-then。对于每个k> 1,我们在3道孔中构造了一个k填充链接。证据依赖于可能具有独立利益的档案定理的扩展。我们讨论了与3个曼尼弗中的“填充”链接有关的概念,并提出了几个开放问题。 C. Leininger和A. Reid的附录建立了在任何可定向的3个manifold中的填充双曲线链接,而等级2的$π_1(m)$。

We introduce and study the notion of filling links in 3-manifolds: a link L is filling in M if for any 1-spine G of M which is disjoint from L, $π_1(G)$ injects into $π_1(M\smallsetminus L)$. A weaker "k-filling" version concerns injectivity modulo k-th term of the lower central series. For each k>1 we construct a k-filling link in the 3-torus. The proof relies on an extension of the Stallings theorem which may be of independent interest. We discuss notions related to "filling" links in 3-manifolds, and formulate several open problems. The appendix by C. Leininger and A. Reid establishes the existence of a filling hyperbolic link in any closed orientable 3-manifold with $π_1(M)$ of rank 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源