论文标题

使用基于注意的融合和空间关系约束的脑肿瘤分割网络

Brain Tumor Segmentation Network Using Attention-based Fusion and Spatial Relationship Constraint

论文作者

Liu, Chenyu, Ding, Wangbin, Li, Lei, Zhang, Zhen, Pei, Chenhao, Huang, Liqin, Zhuang, Xiahai

论文摘要

从磁共振(MR)图像中描述脑肿瘤对于治疗神经胶质瘤至关重要。但是,由于肿瘤的复杂外观和模棱两可的大纲,自动描绘是具有挑战性的。考虑到多模式MR图像可以反映不同的肿瘤生物学特性,我们开发了一种新型的多模式肿瘤分割网络(MMTSN),以基于多模式的MR图像来牢固地分割脑肿瘤。 MMTSN由三个子分支和一个主分支组成。具体而言,子分支用于从多模式图像中捕获不同的肿瘤特征,而在主分支中,我们设计了空间通道融合块(SCFB),以有效地汇总多模式特征。此外,灵感来自于肿瘤子区域之间的空间关系相对固定的事实,例如,增强肿瘤始终处于肿瘤核心中,我们提出空间损失以限制肿瘤不同子区域之间的关系。我们在2020年多模式脑肿瘤分割挑战(BRATS2020)的测试集上评估了我们的方法。该方法分别为整个肿瘤,肿瘤核心和增强肿瘤的0.8764、0.8243和0.773骰子得分。

Delineating the brain tumor from magnetic resonance (MR) images is critical for the treatment of gliomas. However, automatic delineation is challenging due to the complex appearance and ambiguous outlines of tumors. Considering that multi-modal MR images can reflect different tumor biological properties, we develop a novel multi-modal tumor segmentation network (MMTSN) to robustly segment brain tumors based on multi-modal MR images. The MMTSN is composed of three sub-branches and a main branch. Specifically, the sub-branches are used to capture different tumor features from multi-modal images, while in the main branch, we design a spatial-channel fusion block (SCFB) to effectively aggregate multi-modal features. Additionally, inspired by the fact that the spatial relationship between sub-regions of tumor is relatively fixed, e.g., the enhancing tumor is always in the tumor core, we propose a spatial loss to constrain the relationship between different sub-regions of tumor. We evaluate our method on the test set of multi-modal brain tumor segmentation challenge 2020 (BraTs2020). The method achieves 0.8764, 0.8243 and 0.773 dice score for whole tumor, tumor core and enhancing tumor, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源