论文标题

Regge-Wheeler和Zerilli Green功能的特征表述

Characteristic formulation of the Regge-Wheeler and Zerilli Green functions

论文作者

O'Toole, Conor, Ottewill, Adrian, Wardell, Barry

论文摘要

我们提出了一种特征性的初始值方法,用于计算regge-wheeler和Zerilli方程的绿色功能。我们将众所周知的数值方法与新得出的初始数据相结合,以获得可以将其推广到任何所需收敛顺序的方案。我们在电网间距中最多可以实现了最高第六阶的实现方法。通过将我们的数值代码的结果与延迟尾巴的扩展和减去绿色功能的直接部分的方法相结合,我们表明,Schwarzschild时空中的标量自力可以比以前的基于绿色功能的方法更好地计算得更好。我们还证明了与用于计算重力情况下绿色功能的频域方法一致。最后,我们将Regge-Wheeler和Zerilli Green函数应用于重力通量的计算。

We present a characteristic initial value approach to calculating the Green function of the Regge-Wheeler and Zerilli equations. We combine well-known numerical methods with newly derived initial data to obtain a scheme which can in principle be generalised to any desired order of convergence. We demonstrate the approach with implementations up to sixth-order in the grid spacing. By combining the results of our numerical code with late-time tail expansions and methods of subtracting the direct part of the Green function, we show that the scalar self-force in Schwarzschild spacetime can be computed to better accuracy than previous Green-function based approaches. We also demonstrate agreement with frequency-domain methods for computing the Green function in the gravitational case. Finally, we apply the Regge-Wheeler and Zerilli Green functions to the computation of the gravitational energy flux.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源