论文标题
自动启动:从具有自动生成的提示的语言模型中获取知识
AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts
论文作者
论文摘要
审慎的语言模型的显着成功促使研究了这些模型在训练过程中学到的知识。将任务重新设计为填空问题(例如,披肩测试)是一种自然的方法来测量这种知识,但是,其用法受到编写合适提示所需的手动工作和猜测的限制。为了解决这个问题,我们开发了AutoPrompt,这是一种基于梯度引导的搜索,为各种任务创建提示的自动化方法。使用AutoPrompt,我们表明蒙版语言模型(MLMS)具有执行情感分析和自然语言推断的固有能力,而无需其他参数或填充,有时与最近的最先进的监督模型相同。我们还表明,与在喇嘛基准上手动创建的提示相比,我们的提示从MLM中引起的事实知识更为准确,并且与监督关系提取模型相比,MLM可以更有效地用作关系提取器。这些结果表明,自动生成的提示是现有探测方法的可行无参数替代方案,并且随着预处理的LMS变得更加复杂且有能力,可能会替代填充。
The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fill-in-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AutoPrompt, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AutoPrompt, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.