论文标题
零件和麻风等效的几何整合
Geometric integration by parts and Lepage equivalents
论文作者
论文摘要
我们将触点形式的一部分(导致欧拉运算符的定义)与所谓的变异形态分割进行了比较。特别是,我们讨论了第一种接触较低程度形式的方法的概括的可能性。我们为这种情况定义了合适的剩余操作员,并确定Olga Rossi的原始猜想,我们恢复了一阶场理论的Krupka-Betounes等效物。讨论了对第二阶情况的概括。
We compare the integration by parts of contact forms - leading to the definition of the interior Euler operator - with the so-called canonical splittings of variational morphisms. In particular, we discuss the possibility of a generalization of the first method to contact forms of lower degree. We define a suitable Residual operator for this case and, working out an original conjecture by Olga Rossi, we recover the Krupka-Betounes equivalent for first order field theories. A generalization to the second order case is discussed.