论文标题
在活检和手术切除玻片中肾细胞癌的组织学分类的深度神经网络的开发和评估
Development and Evaluation of a Deep Neural Network for Histologic Classification of Renal Cell Carcinoma on Biopsy and Surgical Resection Slides
论文作者
论文摘要
肾细胞癌(RCC)是成年人中最常见的肾癌。 RCC的组织病理学分类对于患者的诊断,预后和管理至关重要。在显微镜下,在活检和手术切除载玻片上的RCC复杂组织学模式的重组和分类仍然是病理学家的严重专业,容易出错且耗时的任务。在这项研究中,我们开发了一个深层神经网络模型,该模型可以准确地将数字化手术切除板和活检载玻片分为五个相关类别:透明细胞RCC,乳头状RCC,Chromophobe RCC,肾脏肿瘤细胞瘤和正常。除了整体滑动分类管道外,我们还通过重新处理补丁级分类结果来可视化幻灯片上确定的指示区域和特征,以确保我们的诊断模型的解释性。我们评估了我们从高等教育机构的78个手术切除整个载玻片和79个活检载体的独立测试集,以及从癌症基因组图集(TCGA)数据库中随机选择的69个随机选择的手术切除玻片。我们的分类器曲线下的平均面积(AUC)在内部切除载玻片,内部活检载玻片和外部TCGA载玻片上的平均面积分别为0.98、0.98和0.99。我们的结果表明,我们的方法在不同的数据源和标本类型中的高推广性。更重要的是,我们的模型有可能通过(1)自动预筛选幻灯片来帮助病理学家,以减少假阴性病例,(2)强调对数字化幻灯片的重要性区域以加速诊断,以及(3)作为第二意见的客观诊断。
Renal cell carcinoma (RCC) is the most common renal cancer in adults. The histopathologic classification of RCC is essential for diagnosis, prognosis, and management of patients. Reorganization and classification of complex histologic patterns of RCC on biopsy and surgical resection slides under a microscope remains a heavily specialized, error-prone, and time-consuming task for pathologists. In this study, we developed a deep neural network model that can accurately classify digitized surgical resection slides and biopsy slides into five related classes: clear cell RCC, papillary RCC, chromophobe RCC, renal oncocytoma, and normal. In addition to the whole-slide classification pipeline, we visualized the identified indicative regions and features on slides for classification by reprocessing patch-level classification results to ensure the explainability of our diagnostic model. We evaluated our model on independent test sets of 78 surgical resection whole slides and 79 biopsy slides from our tertiary medical institution, and 69 randomly selected surgical resection slides from The Cancer Genome Atlas (TCGA) database. The average area under the curve (AUC) of our classifier on the internal resection slides, internal biopsy slides, and external TCGA slides is 0.98, 0.98 and 0.99, respectively. Our results suggest that the high generalizability of our approach across different data sources and specimen types. More importantly, our model has the potential to assist pathologists by (1) automatically pre-screening slides to reduce false-negative cases, (2) highlighting regions of importance on digitized slides to accelerate diagnosis, and (3) providing objective and accurate diagnosis as the second opinion.