论文标题

实时数据采集系统的多功能配置和控制框架

Versatile Configuration and Control Framework for Real Time Data Acquisition Systems

论文作者

Karcher, Nick, Gebauer, Richard, Bauknecht, Robin, Illichmann, Rainer, Sander, Oliver

论文摘要

现代物理实验经常利用基于FPGA的系统进行实时数据获取。对复杂校准例程的集成模拟电子需求。此外,整个系统的多功能配置和控制是关键要求。除了FPGA的低级寄存器接口外,通常还需要访问I $^2 $ C和SPI总线以配置完整的系统。通过FPGA进行的校准是不灵活的,可以产生复杂的硬件实现。相反,通过远程系统的校准是可能的,但由于重复的网络访问而导致的校准较慢。通过使用微处理器使用SOC-FPGA解决方案,可以有效地集成在软件中,更复杂的配置和校准解决方案以及标准的远程访问协议。 基于Xilinx Zynq US+ SOC-FPGA,我们实施了一个多功能控制框架。该软件框架提供了对硬件的方便访问权限,并通过远程处理呼叫(RPC)进行了灵活的抽象。基于开源RPC库GRPC,可以通过以太网通过以太网向客户端提供具有低latent控制流,复杂算法,数据转换和处理的功能,以及通过外部总线配置。此外,可以自动生成各种编程语言的客户端接口,从而简化不同工作组之间的协作并集成到现有软件中。此贡献介绍了有关延迟和数据吞吐量的框架以及基准。

Modern physics experiments often utilize FPGA-based systems for real-time data acquisition. Integrated analog electronics demand for complex calibration routines. Furthermore, versatile configuration and control of the whole system is a key requirement. Beside low-level register interface to the FPGA, also access to I$^2$C and SPI buses is often needed to configure the complete system. Calibration through an FPGA is inflexible and yields a complex hardware implementation. On the contrary, calibration through a remote system is possible but considerably slower due to repetitive network accesses. By using SoC-FPGA solutions with a microprocessor, more sophisticated configuration and calibration solutions, as well as standard remote access protocols, can be efficiently integrated in software. Based on Xilinx Zynq US+ SoC-FPGAs, we implemented a versatile control framework. This software framework offers a convenient access to the hardware and a flexible abstraction via remote-procedure calls (RPCs). Based on the open source RPC library gRPC, functionality with low-latent control flow, complex algorithms, data conversions and processing, as well as configuration via external buses can be provided to a client via Ethernet. Furthermore, client interfaces for various programming languages can be generated automatically which eases collaboration among different working groups and integration into existing software. This contribution presents the framework as well as benchmarks regarding latency and data throughput.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源