论文标题
实验室证据证明质子通过无碰撞冲击冲浪
Laboratory evidence for proton energization by collisionless shock surfing
论文作者
论文摘要
通过天体物理环境(例如超新星残留物)中的无碰撞冲击波,可以通过无碰撞冲击波加速带电的颗粒。通过与磁化环境介质相互作用,这些冲击可以将能量传递到颗粒。尽管在地球冲击和强大的数值模拟中,从卫星测量中表现出这些冲击的努力越来越大,但仍有广泛争议的潜在加速机制或其组合。在这里,我们表明在实验室中可以产生和表征与天体物理相关的超临界准杂感无碰撞冲击。我们观察到冲击曲线中超临界的特征,以及从环境气体到数百个KEV的质子的能量。对实验室实验进行建模的动力学模拟将冲击冲浪确定为质子加速机制。我们的观察结果不仅提供了无碰撞冲击的早期离子能量的直接证据,而且还强调了这种特殊机制在使环境离子为进一步加速阶段提供进一步阶段中所起的作用。此外,我们的结果为未来的实验室实验打开了研究,该实验研究可能在提高磁场强度或效果引起的冲击前纹波可能对加速过程中产生的效果时可能过渡到其他机制。
Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these shocks from satellite measurements at the Earth's bow shock and powerful numerical simulations, the underlying acceleration mechanism or a combination thereof is still widely debated. Here, we show that astrophysically relevant super-critical quasi-perpendicular magnetized collisionless shocks can be produced and characterized in the laboratory. We observe characteristics of super-criticality in the shock profile as well as the energization of protons picked up from the ambient gas to hundreds of keV. Kinetic simulations modelling the laboratory experiment identified shock surfing as the proton acceleration mechanism. Our observations not only provide the direct evidence of early stage ion energization by collisionless shocks, but they also highlight the role this particular mechanism plays in energizing ambient ions to feed further stages of acceleration. Furthermore, our results open the door to future laboratory experiments investigating the possible transition to other mechanisms, when increasing the magnetic field strength, or the effect induced shock front ripples could have on acceleration processes.