论文标题
单相类型理论中的部分功能和递归
Partial Functions and Recursion in Univalent Type Theory
论文作者
论文摘要
我们从建设性的,无数类型的理论中研究了部分功能和可计算理论。重点是将计算性放置在更大的数学环境中,而不是将计算性理论的完整发展。我们从使用优势概念的部分功能的处理开始,该概念用于合成领域理论中,讨论部分地图的类别。我们将这个和其他思想从合成领域理论到类型理论中的其他偏见方法联系起来。我们表明,在我们的环境中很难应用主导概念:Rosolini调查的$σ_0^1 $命题的集合正是一个弱者,但仍然无法证实的选择原则确切地形成了统治地位。为了解决这个问题,我们建议我们称为纪律地图的部分功能的替代概念。在有可数的选择的情况下,这个概念与罗索里尼的概念一致。 使用部分功能的一般概念,我们采取了建设性计算理论的第一步。我们以可计算性作为结构,可以直接访问程序的结构来做到这一点;并以计算性作为属性,我们必须以程序不变的方式工作。我们通过展示了这些方法与拓扑理论和类型理论问题引起的可计算理论的事实如何相关,从而证明了这两种方法之间的差异。最后,我们将这两个线程绑在一起:假设可计数的选择,并且所有总函数$ \ mathbb {n} \ to \ mathbb {n} $都是可计算的(在有效的topos中均均具有rosolini partial函数,纪律处分的映射,可计算的部分功能以及所有共同函数。但是,我们观察到,所有部分功能的类别都包含不可计算的部分功能。
We investigate partial functions and computability theory from within a constructive, univalent type theory. The focus is on placing computability into a larger mathematical context, rather than on a complete development of computability theory. We begin with a treatment of partial functions, using the notion of dominance, which is used in synthetic domain theory to discuss classes of partial maps. We relate this and other ideas from synthetic domain theory to other approaches to partiality in type theory. We show that the notion of dominance is difficult to apply in our setting: the set of $Σ_0^1$ propositions investigated by Rosolini form a dominance precisely if a weak, but nevertheless unprovable, choice principle holds. To get around this problem, we suggest an alternative notion of partial function we call disciplined maps. In the presence of countable choice, this notion coincides with Rosolini's. Using a general notion of partial function, we take the first steps in constructive computability theory. We do this both with computability as structure, where we have direct access to programs; and with computability as property, where we must work in a program-invariant way. We demonstrate the difference between these two approaches by showing how these approaches relate to facts about computability theory arising from topos-theoretic and type-theoretic concerns. Finally, we tie the two threads together: assuming countable choice and that all total functions $\mathbb{N}\to\mathbb{N}$ are computable (both of which hold in the effective topos), the Rosolini partial functions, the disciplined maps, and the computable partial functions all coincide. We observe, however, that the class of all partial functions includes non-computable partial functions.