论文标题
有限特征的彩环
A Grothendieck ring of finite characteristic
论文作者
论文摘要
我们构造了\ Mathbb {n}^*$中的每个整数$ n \,一种结构,其Grothendieck环对$(\ Mathbb {Z}/n \ Mathbb {Z})[X] $同构,因此证明了具有非零Grethendieck环的结构的存在。也就是说,该结构由本集中的套装和$ n $点的补充之间的循环组成。
We construct, for every integer $N\in\mathbb{N}^*$, a structure whose Grothendieck ring is isomorphic to $(\mathbb{Z}/N\mathbb{Z})[X]$, thus proving the existence of structures with a non-zero Grothendieck ring with non-zero characteristic. Namely, this structure consists of the bijection without cycles between a set and a complement of $N$ points in this set.