论文标题
使用分层卷积网络的胸部X射线图像的潜在共vid-19患者分类
Triage of Potential COVID-19 Patients from Chest X-ray Images using Hierarchical Convolutional Networks
论文作者
论文摘要
当前的Covid-19大流行促使研究人员使用人工智能技术,因为测试范围有限,因此可能替代了逆转录聚合酶链反应(RT-PCR)的潜在替代方案。胸部X射线(CXR)是实现快速诊断的替代方案之一,但是大规模注释数据的不可用,这使得基于机器学习的Covid检测的临床实施变得困难。另一个问题是使用ImageNet预训练的网络,该网络不会从医学图像中提取可靠的特征表示。在本文中,我们建议使用分层卷积网络(HCN)体系结构自然增强数据以及多样化的功能。 HCN使用来自covidnet的第一卷积层,然后使用众所周知的预训练网络的卷积层来提取特征。从Covidnet中使用卷积层可确保提取与CXR模式相关的表示形式。我们还建议使用ECOC来编码多类问题来改善识别性能。实验结果表明,与现有研究相比,HCN结构能够获得更好的结果。所提出的方法可以通过CXR图像准确地分类潜在的Covid-19患者,以共享测试负荷并增加测试能力。
The current COVID-19 pandemic has motivated the researchers to use artificial intelligence techniques for a potential alternative to reverse transcription-polymerase chain reaction (RT-PCR) due to the limited scale of testing. The chest X-ray (CXR) is one of the alternatives to achieve fast diagnosis but the unavailability of large-scale annotated data makes the clinical implementation of machine learning-based COVID detection difficult. Another issue is the usage of ImageNet pre-trained networks which does not extract reliable feature representations from medical images. In this paper, we propose the use of hierarchical convolutional network (HCN) architecture to naturally augment the data along with diversified features. The HCN uses the first convolution layer from COVIDNet followed by the convolutional layers from well-known pre-trained networks to extract the features. The use of the convolution layer from COVIDNet ensures the extraction of representations relevant to the CXR modality. We also propose the use of ECOC for encoding multiclass problems to binary classification for improving the recognition performance. Experimental results show that HCN architecture is capable of achieving better results in comparison to the existing studies. The proposed method can accurately triage potential COVID-19 patients through CXR images for sharing the testing load and increasing the testing capacity.