论文标题
稳定解决方案的部分规律性针对分数gel'fand-liouville方程式
Partial regularity of stable solutions to the fractional Gel'fand-Liouville equation
论文作者
论文摘要
我们分析了稳定的弱解决方案,分别凝胶'fand问题\ begin {qore*}(-Δ)^su = e^e^u \ quad \ mathrm {in} \ quadω\ subset \ subset \ subset \ mathbb {r}^n。 \ end {equation*}我们证明,单数集的尺寸最多为$ n-10s。
We analyze stable weak solutions to the fractional Gel'fand problem \begin{equation*} (-Δ)^su=e^u\quad\mathrm{in}\quad Ω\subset\mathbb{R}^n. \end{equation*} We prove that the dimension of the singular set is at most $n-10s.$