论文标题

高度相关的安德森型模型的频谱和动态对比度

Spectral and Dynamical contrast on highly correlated Anderson-type models

论文作者

Matos, Rodrigo, Mavi, Rajinder, Schenker, Jeffrey

论文摘要

我们研究随机schrödinger运算符的光谱和动态属性$ h _ {\ mathrm {diag}} = - a _ {\ mathbb {g} _ {\ mathrm {diag}}}+v_Ω+v_Ω$在某些二维图上$ {\ mathbb {g} $ {\ mathbb {g} _ {\ mathrm {diag}}} $。与标准安德森模型不同,随机电位不是独立的,而是沿任何垂直线,即$v_Ω(n)=ω(n_1)$,对于$ n =(n_1,n_2)$。特别是,此处研究的电位表现出远距离相关性。我们列出了示例,其中几何变化对基础图的变化与高混乱相结合,对操作员的光谱和动力学特性产生了重大影响,从而导致“对角线”和“垂直”模型的对比行为。此外,“垂直”模型在其(纯粹)绝对连续的频谱中表现出急剧的相变。这是由Avron和Simon引入的绝对连续频谱的瞬时和复发组件的概念所捕获的。

We study spectral and dynamical properties of random Schrödinger operators $H_{\mathrm{Vert}}=-A_{\mathbb{G}_{\mathrm{Vert}}}+V_ω$ and $H_{\mathrm{Diag}}=-A_{\mathbb{G}_{\mathrm{Diag}}}+V_ω$ on certain two dimensional graphs ${\mathbb{G}_{\mathrm{Vert}}}$ and ${\mathbb{G}_{\mathrm{Diag}}}$. Differently from the standard Anderson model, the random potentials are not independent but, instead, are constant along any vertical line, i.e $V_ω(n)=ω(n_1)$, for $n=(n_1,n_2)$. In particular, the potentials studied here exhibit long range correlations. We present examples where geometric changes to the underlying graph, combined with high disorder, have a significant impact on the spectral and dynamical properties of the operators, leading to contrasting behaviors for the "diagonal" and "vertical" models. Moreover, the "vertical" model exhibits a sharp phase transition within its (purely) absolutely continuous spectrum. This is captured by the notions of transient and recurrent components of the absolutely continuous spectrum, introduced by Avron and Simon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源