论文标题
优化与嵌入相关的量子退火参数,以减少硬件偏差
Optimizing embedding-related quantum annealing parameters for reducing hardware bias
论文作者
论文摘要
量子退火器已被设计为提出了NP-硬化优化问题的近乎最佳解决方案。但是,当前的退火器(例如D-Wave Systems Inc.)的准确性受环境噪声和硬件偏见的限制。处理这些不完美并提高退火结果质量的一种方法是应用多种预处理技术,例如自旋逆转(SR),退火偏移(AO)或链重(CW)。最大化这些技术的有效性涉及对大量参数进行优化,如果需要为每个新问题实例完成,这将太昂贵。在这项工作中,我们表明可以针对整个问题进行上述参数优化,因为每个实例都使用先前选择的固定嵌入。具体而言,在训练阶段,我们将完整图的嵌入e固定在退火器的硬件上,然后运行优化算法以调整以下参数值集:要在sr上翻转的一组位,特定的量子偏移量,用于AO的特定量子偏移量,并使用链接的分布,在训练图中进行跨度的分布,从而将图形的分布置于范围内,其中eL ey ey ey ey ey ey ey e。测试阶段,我们估计训练阶段在该类别的其他图中的随机选择过程中计算的参数如何。我们研究了最大集团,最大切割和图形分区问题的变化密度的图实例。我们的结果表明,与他们的默认行为相比,通过使用SR,AO和CW的优化参数可以实现退火结果的实质性改进。
Quantum annealers have been designed to propose near-optimal solutions to NP-hard optimization problems. However, the accuracy of current annealers such as the ones of D-Wave Systems, Inc., is limited by environmental noise and hardware biases. One way to deal with these imperfections and to improve the quality of the annealing results is to apply a variety of pre-processing techniques such as spin reversal (SR), anneal offsets (AO), or chain weights (CW). Maximizing the effectiveness of these techniques involves performing optimizations over a large number of parameters, which would be too costly if needed to be done for each new problem instance. In this work, we show that the aforementioned parameter optimization can be done for an entire class of problems, given each instance uses a previously chosen fixed embedding. Specifically, in the training phase, we fix an embedding E of a complete graph onto the hardware of the annealer, and then run an optimization algorithm to tune the following set of parameter values: the set of bits to be flipped for SR, the specific qubit offsets for AO, and the distribution of chain weights, optimized over a set of training graphs randomly chosen from that class, where the graphs are embedded onto the hardware using E. In the testing phase, we estimate how well the parameters computed during the training phase work on a random selection of other graphs from that class. We investigate graph instances of varying densities for the Maximum Clique, Maximum Cut, and Graph Partitioning problems. Our results indicate that, compared to their default behavior, substantial improvements of the annealing results can be achieved by using the optimized parameters for SR, AO, and CW.