论文标题
具有(n+2)的结构的n外观类别的新表征
A new characterization of n-exangulated categories with (n+2)-angulated structure
论文作者
论文摘要
Herschend-Liu-Nakaoka引入了$ n $估算的类别的概念。它不仅是Nakaoka-palu定义的外节类别的较高维度类似物,而且还同时概括了$(n+2)$ - 在jasso的geiss-keller-oppermann和$ n $ oppermann和$ n $ oppermann和$ n $ n $ excories的意义上。在本文中,我们表明,当$ n $外观类别的结构是$(n+2)$ - 角度类别时,并且仅当对于类别中的任何对象$ x $时,形态$ 0 \ x $ x $是一种琐碎的屈曲,并且形态$ x \ to 0 $是一个琐碎的通货膨胀。
Herschend-Liu-Nakaoka introduced the notion of $n$-exangulated categories. It is not only a higher dimensional analogue of extriangulated categories defined by Nakaoka-Palu, but also gives a simultaneous generalization of $(n+2)$-angulated in the sense of Geiss-Keller-Oppermann and $n$-exact categories in the sense of Jasso. In this article, we show that an $n$-exangulated category has the structure of an $(n+2)$-angulated category if and only if for any object $X$ in the category, the morphism $0\to X$ is a trivial deflation and the morphism $X\to 0$ is a trivial inflation.