论文标题
WRSE-一个非参数加权分辨率合奏,用于预测ICU中个体生存分布
WRSE -- a non-parametric weighted-resolution ensemble for predicting individual survival distributions in the ICU
论文作者
论文摘要
重症监护病房(ICU)中死亡率风险的动态评估可用于对患者进行分层,告知治疗效率或作为早期研究系统的一部分。静态风险评分系统(例如Apache或SAPS)最近已经补充了数据驱动的方法,这些方法随着时间的流逝跟踪动态死亡率风险。最近的工作集中在通过产生完整的生存分布而不是点预测或固定的地平线风险来进一步增强向临床医生提供的信息。在这项工作中,我们提出了一个非参数集成模型,加权分辨率生存集合(WRSE),该集合(WRSE)是为估计这种动态的个体生存分布而定制的。受集成方法的简单性和鲁棒性的启发,所提出的方法结合了一组二进制分类器,该二进制分类器根据衰减函数的间隔,反映了短期死亡率预测的相关性。在加权校准和歧视指标下评估了模型和基准,这些模型对个别生存分布,这些分布密切反映了模型在ICU实践中的实用性。我们通过最先进的概率模型显示了竞争成果,同时大大减少了2-9倍的训练时间。
Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of an early-warning system. Static risk scoring systems, such as APACHE or SAPS, have recently been supplemented with data-driven approaches that track the dynamic mortality risk over time. Recent works have focused on enhancing the information delivered to clinicians even further by producing full survival distributions instead of point predictions or fixed horizon risks. In this work, we propose a non-parametric ensemble model, Weighted Resolution Survival Ensemble (WRSE), tailored to estimate such dynamic individual survival distributions. Inspired by the simplicity and robustness of ensemble methods, the proposed approach combines a set of binary classifiers spaced according to a decay function reflecting the relevance of short-term mortality predictions. Models and baselines are evaluated under weighted calibration and discrimination metrics for individual survival distributions which closely reflect the utility of a model in ICU practice. We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x.