论文标题

在新颖的大规模食谱数据集上,多任务学习的多任务预测丰富了营养信息

Multi-Task Learning for Calorie Prediction on a Novel Large-Scale Recipe Dataset Enriched with Nutritional Information

论文作者

Ruede, Robin, Heusser, Verena, Frank, Lukas, Roitberg, Alina, Haurilet, Monica, Stiefelhagen, Rainer

论文摘要

在网上发布的迅速增长的内容,例如食品食谱,为视觉和语言交集的新令人兴奋的应用打开了门。在这项工作中,我们旨在通过从人们在互联网上发表的食谱学习直接从图像中估算出热量的热量,从而跳过了耗时的手动数据注释。由于在不受约束的环境中捕获的大规模公开数据集很少,因此我们提出了PIC2KCAL基准测试,其中包括来自70,000多种食谱,包括照片,成分和说明的308,000张图像。为了获取成分的营养信息并自动确定地面卡路里值,我们将食谱中的项目与食品数据库中的结构化信息匹配。 我们评估了各种神经网络,以回归卡路里数量,并使用多任务范式扩展它们。我们的学习过程将卡路里估计与蛋白质,碳水化合物和脂肪量以及多标签成分分类相结合。我们的实验表明,多任务学习对卡路里估计的明显好处,超过了9.9%的单任务卡路里回归。为了鼓励对这项任务的进一步研究,我们制作了用于生成数据集和公开模型的代码。

A rapidly growing amount of content posted online, such as food recipes, opens doors to new exciting applications at the intersection of vision and language. In this work, we aim to estimate the calorie amount of a meal directly from an image by learning from recipes people have published on the Internet, thus skipping time-consuming manual data annotation. Since there are few large-scale publicly available datasets captured in unconstrained environments, we propose the pic2kcal benchmark comprising 308,000 images from over 70,000 recipes including photographs, ingredients and instructions. To obtain nutritional information of the ingredients and automatically determine the ground-truth calorie value, we match the items in the recipes with structured information from a food item database. We evaluate various neural networks for regression of the calorie quantity and extend them with the multi-task paradigm. Our learning procedure combines the calorie estimation with prediction of proteins, carbohydrates, and fat amounts as well as a multi-label ingredient classification. Our experiments demonstrate clear benefits of multi-task learning for calorie estimation, surpassing the single-task calorie regression by 9.9%. To encourage further research on this task, we make the code for generating the dataset and the models publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源