论文标题
核中效率旋转带的有效现场理论方法
An effective field theory approach to fermionic rotational bands in nuclei
论文作者
论文摘要
我们扩展了一种有效的场理论,以描述偶数核中的旋转带到奇数情况下。这组织了Bohr和Mottelson的处理粒子与转子耦合的粒子作为模型无关的膨胀,以在整个系统的角速度的幂中扩展。我们以角速度进行此扩展最多第四阶,并以$^{99} $ tc,$ {}^{159} $ dy,$ {}^{}^{167,169} $ er,$ {167,167,167,167,169} $ tm,$ tm,$ tm,$ {$ {$ {$ {$ {$ {$ {$ {$ {$ {$ {$ {$ {$ {$ {$ {$ {169} $ {$ {$ {$ {$ {$ {$ $ {}^{239} $ pu。在每种情况下,都可以根据该核中的单粒子和振动能量尺度来理解有效场理论的准确性和分解量表。
We extend an effective field theory developed to describe rotational bands in even-even nuclei to the odd-mass case. This organizes Bohr and Mottelson's treatment of a particle coupled to a rotor as a model-independent expansion in powers of the angular velocity of the overall system. We carry out this expansion up to fourth order in the angular velocity and present results for $^{99}$Tc, ${}^{159}$Dy, ${}^{167, 169}$Er, ${}^{167, 169}$Tm, ${}^{183}$W, ${}^{235}$U and ${}^{239}$Pu. In each case, the accuracy and breakdown scale of the effective field theory can be understood based on the single-particle and vibrational energy scales in that nucleus.