论文标题

在不完美的CSI下,多IR辅助的多细胞上行链路MIMO通信:一种深厚的加固学习方法

Multi-IRS-assisted Multi-Cell Uplink MIMO Communications under Imperfect CSI: A Deep Reinforcement Learning Approach

论文作者

Kim, Junghoon, Hosseinalipour, Seyyedali, Kim, Taejoon, Love, David J., Brinton, Christopher G.

论文摘要

无线网络中智能反射表面(IRS)的应用最近引起了极大的关注。大多数相关文献都集中在部署单个IRS并假定完美的通道状态信息(CSI)的单个单元格设置上。在这项工作中,我们为上行链路中的多IR辅助多细胞网络开发了一种新颖的方法。我们考虑(i)通道是动态的,并且(ii)每个基站(BS)只有部分CSI;具体而言,仅来自用户设备(UE)子集的标量有效渠道功率。我们制定了旨在共同优化IRS的总和最大化问题,反映了光束形成器,BS组合体和UE传输功率。在将其作为顺序决策问题的施放时,我们提出了一种多代理的深入强化学习算法来解决它,在该算法中,每个BS都充当负责调整本地UE传输功率的独立药物,当地IR反映了光束形式的束缚器,其组合者及其组合者。我们介绍了一个有效的信息共享方案,该方案需要相邻BSS之间的信息交换有限,以应对由多个BSS采取的动作耦合引起的非平稳性。我们的数值结果表明,与基线方法相比,我们的方法获得了平均数据速率的显着提高,例如固定UE发射功率和最大比率组合。

Applications of intelligent reflecting surfaces (IRSs) in wireless networks have attracted significant attention recently. Most of the relevant literature is focused on the single cell setting where a single IRS is deployed and perfect channel state information (CSI) is assumed. In this work, we develop a novel methodology for multi-IRS-assisted multi-cell networks in the uplink. We consider the scenario in which (i) channels are dynamic and (ii) only partial CSI is available at each base station (BS); specifically, scalar effective channel powers from only a subset of user equipments (UE). We formulate the sum-rate maximization problem aiming to jointly optimize the IRS reflect beamformers, BS combiners, and UE transmit powers. In casting this as a sequential decision making problem, we propose a multi-agent deep reinforcement learning algorithm to solve it, where each BS acts as an independent agent in charge of tuning the local UE transmit powers, the local IRS reflect beamformer, and its combiners. We introduce an efficient information-sharing scheme that requires limited information exchange among neighboring BSs to cope with the non-stationarity caused by the coupling of actions taken by multiple BSs. Our numerical results show that our method obtains substantial improvement in average data rate compared to baseline approaches, e.g., fixed UE transmit power and maximum ratio combining.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源