论文标题
从组织学图像中检测骨肉瘤的深度学习研究
A Deep Learning Study on Osteosarcoma Detection from Histological Images
论文作者
论文摘要
在美国,新的癌症儿科病例中有5-10%是原发性骨肿瘤。原发性恶性骨肿瘤的最常见类型是骨肉瘤。本工作的目的是使用计算机辅助检测(CAD)和诊断(CADX)改善骨肉瘤的检测和诊断。诸如卷积神经网络(CNN)之类的工具可以显着降低外科医生的工作量,并更好地对患者状况进行预后。 CNN需要对大量数据进行培训,以实现更值得信赖的性能。在这项研究中,转移学习技术(预训练的CNN)适用于骨肉瘤组织学图像上的公共数据集,以检测来自非残疾和健康组织的坏死图像。首先,对数据集进行了预处理,并应用了不同的分类。然后,在没有补丁的整个幻灯片图像(WSI)上使用和培训包括VGG19和Inception V3在内的转移学习模型,以提高输出的准确性。最后,将模型应用于不同的分类问题,包括二进制和多类分类器。实验结果表明,在所有二元类和多类分类中,VGG19的精度最高,96 \%。我们的微调模型证明了基于组织学图像检测骨肉瘤的恶性肿瘤的最新性能。
In the U.S, 5-10\% of new pediatric cases of cancer are primary bone tumors. The most common type of primary malignant bone tumor is osteosarcoma. The intention of the present work is to improve the detection and diagnosis of osteosarcoma using computer-aided detection (CAD) and diagnosis (CADx). Such tools as convolutional neural networks (CNNs) can significantly decrease the surgeon's workload and make a better prognosis of patient conditions. CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance. In this study, transfer learning techniques, pre-trained CNNs, are adapted to a public dataset on osteosarcoma histological images to detect necrotic images from non-necrotic and healthy tissues. First, the dataset was preprocessed, and different classifications are applied. Then, Transfer learning models including VGG19 and Inception V3 are used and trained on Whole Slide Images (WSI) with no patches, to improve the accuracy of the outputs. Finally, the models are applied to different classification problems, including binary and multi-class classifiers. Experimental results show that the accuracy of the VGG19 has the highest, 96\%, performance amongst all binary classes and multiclass classification. Our fine-tuned model demonstrates state-of-the-art performance on detecting malignancy of Osteosarcoma based on histologic images.