论文标题
大型黑洞二进制系统和纳米格拉夫12。5年结果
Massive black hole binary systems and the NANOGrav 12.5 year results
论文作者
论文摘要
北美纳米赫兹引力波(Nanograv)最近报道了证据表明其脉冲星数阵列中存在常见的随机信号。该信号的起源仍不清楚。可能性之一是,这是由于$ \ sim 1-10 \,{\ rm nhz} $频率区域中的随机重力波背景(SGWB)。以面值为单位,以纳米级观察结果为例,我们表明该信号将完全与由当前理论模型预测的未解决的大型黑洞二进制文件(MBHB)产生的SGWB一致。考虑到天体物理上不可知的模型,我们发现MBHB合并率松散地限制为$ 10^{ - 11} -2 $ $ \ Mathrm {mpc}^{ - 3} { - 3} \,\ Mathrm {gyrm {gyr}^{ - 1} $。包括来自星系配对分数和MBH-Bulge缩放关系的其他约束,我们发现MBHB合并率为$ 10^{ - 5} -5 \ 5 \ Times10^{ - 4} $ $ $ \ MATHRM {MPC}^MPC}^{-3}^}^} $ \ le 3 \,\ mathrm {gyr} $和$ m_ \ mathrm {bh} -m_ \ mathrm {bulge} $关系$ \ ge ge 1.2 \ times 10^{8} {8} \,m_ \ odot $(所有间隔均以90 \%prusites引用)。不管MBHB组件的天体物理细节是什么,该结果都意味着大量的大量黑洞搭配,形成二进制文件并在哈勃时间内合并。
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has recently reported evidence for the presence of a common stochastic signal across their array of pulsars. The origin of this signal is still unclear. One of the possibilities is that it is due to a stochastic gravitational wave background (SGWB) in the $\sim 1-10\,{\rm nHz}$ frequency region. Taking the NANOGrav observational result at face value, we show that this signal would be fully consistent with a SGWB produced by an unresolved population of in-spiralling massive black hole binaries (MBHBs) predicted by current theoretical models. Considering an astrophysically agnostic model we find that the MBHB merger rate is loosely constrained to the range $10^{-11} - 2$ $\mathrm{Mpc}^{-3}\,\mathrm{Gyr}^{-1}$. Including additional constraints from galaxy pairing fractions and MBH-bulge scaling relations, we find that the MBHB merger rate is $10^{-5} - 5\times10^{-4}$ $\mathrm{Mpc}^{-3}\,\mathrm{Gyr}^{-1}$, the MBHB merger time-scale is $\le 3\,\mathrm{Gyr}$ and the norm of the $M_\mathrm{BH}-M_\mathrm{bulge}$ relation $\ge 1.2\times 10^{8}\,M_\odot$ (all intervals quoted at 90\% confidence). Regardless of the astrophysical details of MBHB assembly, this result would imply that a sufficiently large population of massive black holes pair up, form binaries and merge within a Hubble time.