论文标题
量子重力分解从波动的最小长度和变形参数在普朗克尺度上
Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale
论文作者
论文摘要
重力诱导的破坏性方案正在积极研究,作为量子到古典过渡的可能机制。在这里,我们引入了由于量子重力效应而引起的变质过程。我们假设一个泡沫量子时空,而波动的最小长度平均与普朗克量表重合。考虑到变形的规范换向关系与波动变形参数,我们得出了一个lindblad的主方程,该方程在能量空间和分离时间与当前可用的观察证据一致。与其他引力反应性方案相比,我们发现我们模型预测的分解速率是极端的,在低于普朗克量表的深度量子状态下是最小的,在其超出其超出其介质状态下的最大程度。我们讨论了基于具有超低分子振荡器的空腔光学机械设置的模型的可能实验测试,我们提供了有关实际实验室实施所需的物理参数值的初步估计。
Schemes of gravitationally induced decoherence are being actively investigated as possible mechanisms for the quantum-to-classical transition. Here, we introduce a decoherence process due to quantum gravity effects. We assume a foamy quantum spacetime with a fluctuating minimal length coinciding on average with the Planck scale. Considering deformed canonical commutation relations with a fluctuating deformation parameter, we derive a Lindblad master equation that yields localization in energy space and decoherence times consistent with the currently available observational evidence. Compared to other schemes of gravitational decoherence, we find that the decoherence rate predicted by our model is extremal, being minimal in the deep quantum regime below the Planck scale and maximal in the mesoscopic regime beyond it. We discuss possible experimental tests of our model based on cavity optomechanics setups with ultracold massive molecular oscillators and we provide preliminary estimates on the values of the physical parameters needed for actual laboratory implementations.