论文标题

沟通感知的多机器人协调,suppodular最大化

Communication-Aware Multi-robot Coordination with Submodular Maximization

论文作者

Shi, Guangyao, Rabban, Ishat E, Zhou, Lifeng, Tokekar, Pratap

论文摘要

亚次化最大化已被广泛用于许多多机器人任务计划问题,包括信息收集,探索和目标跟踪。但是,在多机器人设置中很少探索supsodular最大化和通信之间的相互作用。在许多情况下,最大化的子管道目标可能会以某种方式驱动机器人,从而断开通信网络。在本文中,在此类观察的驱动下,我们考虑了与连通性约束最大化的下函数的问题。具体而言,我们提出了一个称为通信感知的次传达最大化(CSM)的问题,其中在决策过程中共同考虑了沟通维护和supsodular最大化。提出了一种由两个阶段组成的启发式算法,即\ textIt {拓扑生成}和\ textit {deviation Minimization}。我们通过数值模拟验证配方和算法。我们发现,与纯粹的贪婪策略相比,平均而言,我们的算法仅略有下降。

Submodular maximization has been widely used in many multi-robot task planning problems including information gathering, exploration, and target tracking. However, the interplay between submodular maximization and communication is rarely explored in the multi-robot setting. In many cases, maximizing the submodular objective may drive the robots in a way so as to disconnect the communication network. Driven by such observations, in this paper, we consider the problem of maximizing submodular function with connectivity constraints. Specifically, we propose a problem called Communication-aware Submodular Maximization (CSM), in which communication maintenance and submodular maximization are jointly considered in the decision-making process. One heuristic algorithm that consists of two stages, i.e. \textit{topology generation} and \textit{deviation minimization} is proposed. We validate the formulation and algorithm through numerical simulation. We find that our algorithm on average suffers only slightly performance decrease compared to the pure greedy strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源