论文标题
扰动的雅各比多项式扩展
Equiconvergence for perturbed Jacobi polynomial expansions
论文作者
论文摘要
我们以界面间隔显示了雅各比操作员某些扰动的特征函数的渐近膨胀,从而在扩展相对于相关的正顺序基础和相对于余弦基础的扩展而言。然后遵循点侧收敛的几个结果。
We show asymptotic expansions of the eigenfunctions of certain perturbations of the Jacobi operator in a bounded interval, deducing equiconvergence results between expansions with respect to the associated orthonormal basis and expansions with respect to the cosine basis. Several results for pointwise convergence then follow.