论文标题

Recbole:朝着推荐算法的统一,全面和高效的框架

RecBole: Towards a Unified, Comprehensive and Efficient Framework for Recommendation Algorithms

论文作者

Zhao, Wayne Xin, Mu, Shanlei, Hou, Yupeng, Lin, Zihan, Chen, Yushuo, Pan, Xingyu, Li, Kaiyuan, Lu, Yujie, Wang, Hui, Tian, Changxin, Min, Yingqian, Feng, Zhichao, Fan, Xinyan, Chen, Xu, Wang, Pengfei, Ji, Wendi, Li, Yaliang, Wang, Xiaoling, Wen, Ji-Rong

论文摘要

近年来,文献中提出了许多建议算法,从传统的协作过滤到深度学习算法。但是,有关如何标准化建议算法的开源实施的担忧不断增加。鉴于这一挑战,我们提出了一个名为Recbole的统一,全面和高效的系统库,该库提供了一个统一的框架来开发和复制用于研究目的的建议算法。在此库中,我们在28个基准数据集上实施了73个建议模型,涵盖了一般建议,顺序建议,上下文感知建议和基于知识的建议的类别。我们基于Pytorch实施了Recbole库,这是最受欢迎的深度学习框架之一。我们的图书馆在许多方面都有特色,包括一般和可扩展的数据结构,全面的基准模型和数据集,有效的GPU加速执行以及广泛的标准评估协议。我们提供一系列辅助功能,工具和脚本,以促进该库的使用,例如自动参数调整和突发点履历。这样的框架对于标准化推荐系统的实现和评估很有用。该项目和文档在https://recbole.io/上发布。

In recent years, there are a large number of recommendation algorithms proposed in the literature, from traditional collaborative filtering to deep learning algorithms. However, the concerns about how to standardize open source implementation of recommendation algorithms continually increase in the research community. In the light of this challenge, we propose a unified, comprehensive and efficient recommender system library called RecBole, which provides a unified framework to develop and reproduce recommendation algorithms for research purpose. In this library, we implement 73 recommendation models on 28 benchmark datasets, covering the categories of general recommendation, sequential recommendation, context-aware recommendation and knowledge-based recommendation. We implement the RecBole library based on PyTorch, which is one of the most popular deep learning frameworks. Our library is featured in many aspects, including general and extensible data structures, comprehensive benchmark models and datasets, efficient GPU-accelerated execution, and extensive and standard evaluation protocols. We provide a series of auxiliary functions, tools, and scripts to facilitate the use of this library, such as automatic parameter tuning and break-point resume. Such a framework is useful to standardize the implementation and evaluation of recommender systems. The project and documents are released at https://recbole.io/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源