论文标题
构建ADS_2流几何形状
Constructing AdS_2 flow geometries
论文作者
论文摘要
我们考虑从渐近广告$ _2 $时空流出的二维几何形状。从宏观上讲,流量几何形状及其热力学特性是从Dilaton-Gravity模型的角度研究的。我们提出了一个精确的映射,该图从几乎无质量的物质场的边界两点函数中构建固定的背景度量。我们分析对流量几何形状的约束,被视为依赖能量条件的尺寸降低理论的解决方案。从显微镜上讲,我们在消失和非散热温度下在SYK型模型中构建了可计算障碍的RG流。对于某些参数空间的制度,流动几何图编码显微镜RG流量被认为是在两个(近)ADS $ _2 $ spaceTimes之间插值。还讨论了物质字段与假定体积中的Dilaton之间的耦合。我们猜测微观流在渐近广告$ _2 $时空和DS $ _2 $ World的一部分之间插值。
We consider two-dimensional geometries flowing away from an asymptotically AdS$_2$ spacetime. Macroscopically, flow geometries and their thermodynamic properties are studied from the perspective of dilaton-gravity models. We present a precise map constructing the fixed background metric from the boundary two-point function of a nearly massless matter field. We analyse constraints on flow geometries, viewed as solutions of dimensionally reduced theories, stemming from energy conditions. Microscopically, we construct computationally tractable RG flows in SYK-type models at vanishing and non-vanishing temperature. For certain regimes of parameter space, the flow geometry holographically encoding the microscopic RG flow is argued to interpolate between two (near) AdS$_2$ spacetimes. The coupling between matter fields and the dilaton in the putative bulk is also discussed. We speculate on microscopic flows interpolating between an asymptotically AdS$_2$ spacetime and a portion of a dS$_2$ world.